
Ahmad Shahzad

Research Students, Department of Zoology, Gov Vidarbha Institute of Science and Humanities Amravati, MS, India - 444604

Corresponding Author: ahmadshahzad0023@live.com

ABSTRACT

Earthworms are a farmer friend. It is widely use for production of composted. It is very useful for agriculture as it provide good manure which is play an important role in food production. Earthworm has eating a waste material and cow dung slurry and soil etc. Present research article related to the production of compost manure from 25 earthworms in one month. The earthworms are use raw material and wastage material and cow dung, *Eisenia Foetida* is mostly use for production of composted. The 25 earthworms finished 4kg food in 35 days and produced 3.8kg compost.

KEYWORDS

soil, cow dung, leaves, earthworm, compost etc.

INTRODUCTION

Crawler is a tube shaped, segmented animal commonly found in living in soil, feeding on live and dead organic matter. Wiggler is the usual name for the greatest number of Oligochaeta in the phylum annelid. Earthworms are common soil organism in most environments and play an important role on structure and fertility of soil ecosystems (Bartlett et al., 2010).

A larger proportion (>80%) of biomass of terrestrial invertebrates are represented by earthworms which play an authoritative part in structuring and increasing the nutrient content of the land. (Bustos-Obregon and Goicochea, 2002; Culy and Berry, 1995; Shahla and D’Souza, 2010; Sorour and Larink, 2001)

There is a strong and growing interest in soil organisms among environmental scientists and regulators. This reflects concerns about soil fertility in agricultural land, risks of chemicals leaching into drinking water, contamination of soil, and its effects on plants and animals. Soil organisms can provide valuable indicators by which to study these issues. Recent developments in national and international legislation have sharpened the need for reliable, sensitive indicator organisms to use in research, monitoring, and regulatory testing. This study is part of a multistage project to develop a suite of validated biomarkers for exposure to the organophosphates, diazinon and chlorpyrifos, that can be related to higher-order effects. Stage one of this research was evaluation of potential biomarkers in the earthworm species *Aporrectodea caliginosa* (Savigny) under laboratory conditions (Booth et al. 1998) Earthworms being terrestrial invertebrate animals generally live in upper surface of the earth, they are found in those places where organic food and moisture is present and have to face the effect of pollutants always with many others. Earthworms are of enormous ecological importance to mankind, particularly in his agricultural endeavors. They make significant contribution in the recycling of organic wastes and production of organic fertilizers, in this way they are helpful in maintenance of soil structure, aeration and fertility.

MATERIALS AND METHODS

Earthworms:-

Eisenia foetida was adopted as the test species, because it is the recommended species in we were make culture for the earthworm to growing and after some days 25 earthworms taking from this culture.

Test for compost:-

We were take 25 earthworms *Eisenia foetida* and adding 2kg soil and 1.5kg cow dung and 300gm sand granule and leaves 200gm for duration of 1 month in 20° C 250 temperature and create moisture and covering with cloth and observe after 30 days.
RESULTS AND DISCUSSION

Earthworms are very important from the agriculture point of view. This test gives an idea about compost from earthworm. We found out in the test of compost that the earthworm takes charge and gives 3.8 kg compost from 4 kg soil mixture (Table B). In the soil mixture, we used 2 kg soil, 1.5 kg cow dung, 200 g (leaves), 300 g sand, and 4 kg granules.

Table 1: Before

<table>
<thead>
<tr>
<th>NO of Earthworms</th>
<th>Weight of Earthworms</th>
<th>Soil</th>
<th>Cow Dung</th>
<th>Leaves</th>
<th>Sand Granules</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>28g</td>
<td>2kg</td>
<td>1.5kg</td>
<td>200g</td>
<td>300g</td>
<td>4kg</td>
</tr>
</tbody>
</table>

In that test, we used 25 earthworms and the weight 28 g after 35 days. The weight of the earthworm increased to 55 g. And the number of earthworms also increased to 65 from the initial stage (Tables 1 & 2).

Table 2: After 35 days

<table>
<thead>
<tr>
<th>NO of Earthworms</th>
<th>Weight of Earthworms</th>
<th>Weight of Compost</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>55g</td>
<td>3.8kg</td>
</tr>
</tbody>
</table>

These tests have been providing how much time is required for the formation of compost. These tests have given an idea about which type of artificial soil is prepared.

CONCLUSION

In that research, we have investigated how many compost is produced from earthworms in 1 month. Earthworms are very important for agriculture and for the production of good food from soil. In that soil, there are many raw materials, and cow dung is used for compost. In that research, we saw that earthworms were completely finished with the soil mixture in 35 days and produced compost. And that compost provided benefits in agriculture.

REFERENCES

© 2013 | Published by IRJSE

Source of Support: Nil, Conflict of Interest: None declared